This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

Synthesis, spectroscopic investigation and molecular structures of

$\left[\mathrm{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$

${ }^{\text {a }}$ Department of Inorganic and Radiation Chemistry, Institute of Chemistry, University of Silesia, 40006 Katowice, Poland ${ }^{\text {b }}$ X-Ray Crystallography Laboratory, Institute of General and Ecological Chemistry, Technical University of Łódź, 90-924 Łódź, Poland

To cite this Article DziEgielewski, J. O. , Michalik, S. , Kruszynski, R. and Bartczak, T. J.(2005) 'Synthesis, spectroscopic investigation and molecular structures of $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$ ', Journal of Coordination Chemistry, 58: 9, 741-749
To link to this Article: DOI: 10.1080/00958970412331336916
URL: http://dx.doi.org/10.1080/00958970412331336916

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis, spectroscopic investigation and molecular structures of $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\operatorname{ReBr}_{2}\left(\mathbf{N}_{2} \mathbf{C O P h}\right)(\right.$ (bpy $\left.)\left(\mathbf{P P h}_{3}\right)\right]$

J. O. DZIĘGIELEWSKI* \ddagger, S. MICHALIK \ddagger, R. KRUSZYNSKI $\uparrow \S$ and T. J. BARTCZAK§
\#Department of Inorganic and Radiation Chemistry, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland
§X-Ray Crystallography Laboratory, Institute of General and Ecological Chemistry, Technical University of Łódź, 116 Żeromski St., 90-924 Łódź, Poland

(Received in final form 5 July 2004)

Abstract

$\left[\operatorname{ReBr}_{2}\left(\eta^{2}-\mathrm{N}_{2} \mathrm{COPh}-N^{\prime}, O\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ reacts with bipyridine (bpy) and pyrazole to give $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$ and $\left[\mathrm{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$, respectively. Both complexes have been characterized by IR, electronic and ${ }^{1} \mathrm{H}$ NMR spectroscopy, magnetic measurements and X-ray structure determination.

Keywords: Rhenium; Organodiazenido; X-ray structure; Electronic structure

1. Introduction

Organodiazenido ligands, as well as others containing multiple metal-nitrogen bonds, have been of great interest in recent years because of their amphoteric nature and close relationship to dinitrogen and nitrosyl ligands. Similar to the nitrosyl group, the organodiazenido ligand (-NNR) displays a variety of geometries: singly bent, doubly bent and bridging. Structural and synthetic studies of organodiazenido transition metal complexes have shown that the chemistry of these compounds is varied and interesting [1-3]. Furthermore, the β-emitting radionucleides of rhenium, ${ }^{186} \mathrm{Re}$ and ${ }^{188} \mathrm{Re}$, are of great interest in nuclear medicine, as they possess physical and nuclear properties favorable for use in systematic radiotherapy [4]. With the above in mind, we present the synthesis, spectroscopic and structural characterization of $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (1) and $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$ (2).

[^0]
2. Experimental

Ammonium perrhenate and triphenylphosphine purchased from Aldrich and pyrazole purchased from P.O.Ch. Gliwice were used without further purification. $\left[\operatorname{ReBr}_{2}\left(\eta^{2}-\right.\right.$ $\left.\mathrm{N}_{2} \mathrm{COPh}-N^{\prime}, O\right)\left(\mathrm{PPh}_{3}\right)_{2}$] was prepared according to a literature method [5]. The solvent used in the reaction was argon saturated.

2.1. $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (1)

$\left[\mathrm{ReCl}_{2}\left(\eta^{2}-\mathrm{N}_{2} \mathrm{COPh}-N^{\prime}, O\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](1 \mathrm{~g}, 1.1 \mathrm{mmol})$ was added to pyrazole $(0.5 \mathrm{~g}$, $7.2 \mathrm{mmol})$ in methanol $\left(50 \mathrm{~cm}^{3}\right)$ and the reaction mixture was refluxed for 48 h . The resulting green, crystalline precipitate was collected by filtration and crystals suitable for X-ray structure determination were obtained by recrystallization from a mixture of chloroform and methanol. Yield: 70\%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 293 \mathrm{~K}\right): 13.2(1 \mathrm{H}, \mathrm{s} \mathrm{N}-\mathrm{H}) 6.8-7.72(\mathrm{~m}, 38 \mathrm{H}, \mathrm{CH}$ of ArH and CH in pyrazole). ${ }^{31} \mathrm{P}$ NMR: -4.37 ppm . IR: $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3338$ (s), 3053 (m), 1592 (s), 1551 (s), 1482 (s), 1462 (s), $1433(\mathrm{~s}), 1312$ (m), 1263 (vs), 1171 (m), 1089 (s), 1061 (m), 855 (m), $746(\mathrm{~m}), 693$ (s), 518 (s), 494 (s). Calc. for $\mathrm{C}_{46} \mathrm{H}_{39} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{OP}_{2} \operatorname{Re}(\%)$: C, 51.55; H, 3.67; N, 5.23. Found: C, 51.45; H, 3.70; N, 5.22.

2.2. $\left[\mathrm{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$ (2)

$\left[\operatorname{ReBr}_{2}\left(\eta^{2}-\mathrm{N}_{2} \mathrm{COPh}-N^{\prime}, O\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](1 \mathrm{~g}, 1.1 \mathrm{mmol})$ was added to bipyridine (bpy) $(0.5 \mathrm{~g}$, $3.2 \mathrm{mmol})$ in toluene $\left(50 \mathrm{~cm}^{3}\right)$ and the reaction mixture was refluxed for 1 h . The green, crystalline precipitate that formed was collected by filtration and crystals suitable for X-ray structure determination were obtained by recrystallization from a mixture of chloroform and methanol. Yield: 70\%.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1638 (m), 1607 (m), 1523 (s$), 1475$ (s$), 1436$ (s$), 1234$ (vs), 1166 (m), 1048 (m), 1020 (m), 771 (m), 695 (s), 6362 (m), 534 (m). Calc. for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{OPRe}(\%)$: C, 46.83; H, 3.14; N, 6.24. Found: C, 46.5; H, 3.1; N, 6.31.

2.3. Physical measurements

Infrared spectra were recorded on a Nicolet Magna 560 spectrophotometer in the range 4000 to $400 \mathrm{~cm}^{-1}$ with the samples in the form of potassium bromide pellets. Electronic spectra were measured on a Lab Alliance UV-VIS 8500 spectrophotometer in the range 800 to 220 nm in deoxygenated dichloromethane. Magnetic susceptibilities were determined with a Quantum Design SQUID magnetometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with a Bruker 400 MHz spectrometer at room temperature.

2.4. Crystal structure determinations and refinement details

Crystals of $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$ suitable for X -ray structure determination were obtained by recrystallization from a mixture of chloroform and methanol. A crystal was mounted on a KM-4-CCD automatic diffractometer equipped with a CCD detector. X-ray intensity data were collected with graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA$) at room temperature with the ω scan mode. For $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ a 50 -s exposure time

Table 1. Crystal data and structure refinement details for $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathbf{1})$ and $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$ (2).

	1	2
Empirical formula	$\mathrm{C}_{46} \mathrm{H}_{39} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{OP}_{2} \mathrm{Re}$	$\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{OPRe}$
Formula weight	1071.80	897.60
Temperature	291(2) K	293(2) K
Wavelength	0.71073 A	0.71073 £
Crystal system	Monoclinic	Monoclinic
Space group	$P 2{ }_{1} / \mathrm{c}$	$P 2_{1} / n$
Unit cell dimensions	$\begin{aligned} & a=11.9280(9) \AA \\ & b=12.4206(7) \AA ; \beta=100.308(6)^{\circ} \\ & c=29.0211(19) \AA \end{aligned}$	$\begin{aligned} & a=11.2990(7) \AA^{\circ} \\ & b=16.2945(9) \AA_{;} \beta=101.416(5)^{\circ} \\ & c=18.5528(11) \AA \end{aligned}$
Volume	$4230.2(5) \AA^{3}$	3348.2(3) \AA^{3}
Z	4	4
Density (calculated)	$1.681 \mathrm{Mg} \mathrm{m}^{-3}$	$1.781 \mathrm{Mg} \mathrm{m}^{-3}$
Absorption coefficient	$4.878 \mathrm{~mm}^{-1}$	$6.098 \mathrm{~mm}^{-1}$
$F(000)$	2100	1736
Crystal size	$0.17 \times 0.14 \times 0.14 \mathrm{~mm}$	$0.028 \times 0.083 \times 0.223 \mathrm{~mm}$
θ range for data collection	2.94 to 25.10°	2.89 to 25.12°
Index ranges	$\begin{aligned} -14 & \leq h \leq 14 \\ -14 & \leq k \leq 14 \\ -34 & \leq l \leq 34 \end{aligned}$	$\begin{aligned} & -13 \leq h \leq 13 \\ & -17 \leq k \leq 19 \\ & -21 \leq l \leq 22 \end{aligned}$
Reflections collected	43347	27547
Independent reflections	$7533\left(R_{\text {int }}=0.1144\right)$	5973 ($\left.R_{\text {int }}=0.1057\right)$
Max. and min. transmission	0.5525 and 0.4964	0.8478 and 0.3433
Completeness to 2θ	95.1\%	96.0\%
Data/restraints/parameters	7533/0/551	5973/0/397
Goodness-of-fit on F^{2}	1.071	0.965
Final R indices [$I>2 \sigma(I)$]	$\begin{aligned} & R 1=0.0585 \\ & w R 2=0.1065 \end{aligned}$	$\begin{aligned} & R 1=0.0444 \\ & w R 2=0.0444 \end{aligned}$
R indices (all data)	$R 1=0.0927$	$R 1=0.0929$
	$w R 2=0.1201$	$w R 2=0.0808$
Largest diff. peak and hole	1.860 and $-1.622 \mathrm{e}^{\AA^{-3}}$	0.928 and $-0.695 \mathrm{e} \AA^{-3}$

was used and a whole Ewald sphere was collected up to $2 \theta=50.2^{\circ}$. For $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\right.$ bpy $\left.)\left(\mathrm{PPh}_{3}\right)\right]$ a 30 -s exposure time was used and a whole Ewald sphere was collected up to $2 \theta=50.24^{\circ}$. Unit cell parameters were determined from least-squares refinement of the setting angles of the 8416 and 3835 strongest reflections for $\mathbf{1}$ and 2, respectively. Details concerning crystal data and refinement for both complexes are given in table 1. The structures were solved by the Patterson method and subsequently completed by difference Fourier synthesis. All non-hydrogen atoms were refined anisotropically using full-matrix, least-squares techniques. All hydrogen atoms were found in difference Fourier syntheses and refined as riding on their parent carbon atoms with geometry idealization after each cycle. They were assigned isotropic temperature factors equal to 1.2 times the value of equivalent temperature factor of the parent carbon atom. SHELXS97 [6], SHELXL97 [7] and SHELXTL [8] programs were used for all calculations.

3. Results and discussion

The reaction of $\left[\operatorname{ReBr}_{2}\left(\eta^{2}-\mathrm{N}_{2} \mathrm{COPh}-N^{\prime}, O\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with pyrazole results in the opening of the chelate ring through displacement of the coordinated carbonyl group by pyrazole and leads to $\left[\mathrm{ReBr}_{2}\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{N}_{2} \mathrm{COPh}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complex.

Refluxing [$\left.\operatorname{ReBr}_{2}\left(\eta^{2}-\mathrm{N}_{2} \mathrm{COPh}-N^{\prime}, O\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with an excess of bipyridine in toluene leads to $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$, according to the following scheme.

Complexes $\mathbf{1}$ and $\mathbf{2}$ are composed of discrete monomers with all atoms located in general positions. A perspective view of $\left[\mathrm{ReBr}_{2}\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{N}_{2} \mathrm{COPh}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with the atom numbering scheme is shown in figure 1, and figure 2 presents a perspective drawing of $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$. The coordination geometry about the rhenium center in $\left[\mathrm{ReBr}_{2}\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{N}_{2} \mathrm{COPh}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ shows mutually trans triphenylphosphine molecules minimizing steric congestion and bromine donors trans to the monodentate organodiazenido ligand and to the pyrazole molecule, which has displaced the carbonyl oxygen of the diazenido substituent. Bipyridine in $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$ forms a five-membered ring with the metal atom trans to the monodentate organodiazenido ligand and the bromide $\operatorname{Br}(1)$ ion. The pseudooctahedral environment of Re in

Figure 1. ORTEP view of the structure of $\mathbf{1}$ showing 50% probability thermal ellipsoids and the atom numbering scheme.

Figure 2. ORTEP view of the structure of $\mathbf{2}$ showing 50% probability thermal ellipsoids and the atom numbering scheme.

Table 2. Selected bond lengths $[\AA]$ and angles [$\left.{ }^{\circ}\right]$ for $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right], \mathbf{1}$.

$\operatorname{Re}(1)-\mathrm{N}(3)$	$1.736(6)$	$\mathrm{N}(3)-\operatorname{Re}(1)-\mathrm{N}(1)$	$92.3(3)$
$\operatorname{Re}(1)-\mathrm{N}(1)$	$2.188(6)$	$\mathrm{N}(3)-\operatorname{Re}(1)-\mathrm{P}(1)$	$92.6(2)$
$\operatorname{Re}(1)-\mathrm{P}(1)$	$2.474(2)$	$\mathrm{N}(1)-\operatorname{Re}(1)-\mathrm{P}(1)$	$88.67(17)$
$\operatorname{Re}(1)-\mathrm{P}(2)$	$2.476(2)$	$\mathrm{N}(3)-\operatorname{Re}(1)-\mathrm{P}(2)$	$94.6(2)$
$\operatorname{Re}(1)-\mathrm{Br}(2)$	$2.5641(9)$	$\mathrm{N}(1)-\operatorname{Re}(1)-\mathrm{P}(2)$	$91.35(17)$
$\operatorname{Re}(1)-\mathrm{Br}(1)$	$2.5844(9)$	$\mathrm{P}(1)-\operatorname{Re}(1)-\mathrm{P}(2)$	$172.84(7)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.327(9)$	$\mathrm{N}(3)-\operatorname{Re}(1)-\operatorname{Br}(2)$	$179.2(2)$
$\mathrm{N}(1)-\mathrm{C}(46)$	$1.338(10)$	$\mathrm{N}(1)-\operatorname{Re}(1)-\operatorname{Br}(2)$	$86.89(16)$
$\mathrm{N}(2)-\mathrm{C}(44)$	$1.357(10)$	$\mathrm{P}(1)-\operatorname{Re}(1)-\operatorname{Br}(2)$	$87.40(6)$
$\mathrm{N}(3)-\mathrm{N}(4)$	$1.252(8)$	$\mathrm{P}(2)-\operatorname{Re}(1)-\operatorname{Br}(2)$	$85.45(5)$
$\mathrm{N}(4)-\mathrm{C}(37)$	$1.382(10)$	$\mathrm{N}(3)-\operatorname{Re}(1)-\operatorname{Br}(1)$	$87.6(2)$
$\mathrm{C}(37)-\mathrm{O}(1)$	$\mathrm{N}(1)-\operatorname{Re}(1)-\operatorname{Br}(1)$	$179.03(16)$	
$\mathrm{C}(37)-\mathrm{C}(38)$	$1.233(9)$	$\mathrm{P}(1)-\operatorname{Re}(1)-\operatorname{Br}(1)$	$90.37(6)$
	$1.477(11)$	$\mathrm{P}(2)-\operatorname{Re}(1)-\operatorname{Br}(1)$	$89.62(5)$
		$\mathrm{Br}(2)-\operatorname{Re}(1)-\operatorname{Br}(1)$	$93.21(3)$
		$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(46)$	$107.9(7)$
	$\mathrm{N}(2)-\mathrm{N}(1)-\operatorname{Re}(1)$	$120.4(5)$	
	$\mathrm{C}(46)-\mathrm{N}(1)-\operatorname{Re}(1)$	$131.6(6)$	
	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(44)$	$109.2(7)$	
	$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{N}(2)$	$108.5(8)$	
	$\mathrm{N}(4)-\mathrm{N}(3)-\operatorname{Re}(1)$	$169.3(6)$	
	$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(37)$	$118.8(7)$	
		$\mathrm{O}(1)-\mathrm{C}(37)-\mathrm{N}(4)$	$123.1(7)$
		$\mathrm{O}(1)-\mathrm{C}(37)-\mathrm{C}(38)$	$121.8(8)$
	$\mathrm{N}(4)-\mathrm{C}(37)-\mathrm{C}(38)$	$115.1(7)$	
		$\mathrm{O}(1)-\mathrm{C}(29)-\mathrm{C}(30)$	$114.0(13)$

$\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$ shows clear distortions, induced mainly by the bite angle of chelating bipyridine - cis angles vary between 75.0 and 97.0° and trans angles range from 166.1 to 171.8°. Selected bond lengths and angles for $\left[\mathrm{ReBr}_{2}\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{N}_{2} \mathrm{COPh}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\right.$ bpy $\left.)\left(\mathrm{PPh}_{3}\right)\right]$ are summarized in tables 2 and 3, respectively. Angular distortion from an ideal octahedron is caused by the presence of the multiply bonding ligand (-NNR) cis to pyrazole and bpy.

Table 3. Selected bond lengths $[\AA]$ and angles [$\left.{ }^{\circ}\right]$ for $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right], 2$.

$\mathrm{Re}(1)-\mathrm{N}(3)$	$1.739(7)$	$\mathrm{N}(3)-\operatorname{Re}(1)-\mathrm{N}(2)$	97.0(2)
$\operatorname{Re}(1)-\mathrm{N}(2)$	2.087(5)	$\mathrm{N}(3)-\operatorname{Re}(1)-\mathrm{N}(1)$	171.8(2)
$\mathrm{Re}(1)-\mathrm{N}(1)$	2.223(6)	$\mathrm{N}(2)-\mathrm{Re}(1)-\mathrm{N}(1)$	75.0(2)
$\mathrm{Re}(1)-\mathrm{P}(1)$	2.402(2)	$\mathrm{N}(3)-\mathrm{Re}(1)-\mathrm{P}(1)$	93.2(2)
$\mathrm{Re}(1)-\mathrm{Br}(1)$	2.5496(8)	$\mathrm{N}(2)-\operatorname{Re}(1)-\mathrm{P}(1)$	98.01(16)
$\mathrm{Re}(1)-\mathrm{Br}(2)$	2.5869(9)	$\mathrm{N}(1)-\operatorname{Re}(1)-\mathrm{P}(1)$	89.87(16)
$\mathrm{P}(1)-\mathrm{C}(1)$	1.810(9)	$\mathrm{N}(3)-\operatorname{Re}(1)-\operatorname{Br}(1)$	95.28(19)
$\mathrm{P}(1)-\mathrm{C}(7)$	1.822(9)	$\mathrm{N}(2)-\operatorname{Re}(1)-\operatorname{Br}(1)$	166.09(16)
$\mathrm{P}(1)-\mathrm{C}(13)$	$1.832(8)$	$\mathrm{N}(1)-\operatorname{Re}(1)-\operatorname{Br}(1)$	92.46(16)
$\mathrm{N}(3)-\mathrm{N}(4)$	1.249(10)	$\mathrm{P}(1)-\mathrm{Re}(1)-\mathrm{Br}(1)$	87.87(5)
$\mathrm{N}(4)-\mathrm{C}(29)$	1.250(14)	$\mathrm{N}(3)-\operatorname{Re}(1)-\operatorname{Br}(2)$	96.3(2)
$\mathrm{C}(29)-\mathrm{O}(1)$	1.296(12)	$\mathrm{N}(2)-\operatorname{Re}(1)-\operatorname{Br}(2)$	83.75(16)
		$\mathrm{N}(1)-\operatorname{Re}(1)-\operatorname{Br}(2)$	81.10(16)
		$\mathrm{P}(1)-\operatorname{Re}(1)-\operatorname{Br}(2)$	170.06(6)
		$\operatorname{Br}(1)-\operatorname{Re}(1)-\operatorname{Br}(2)$	88.37(3)
		$\mathrm{C}(1)-\mathrm{P}(1)-\operatorname{Re}(1)$	110.3(3)
		$\mathrm{C}(7)-\mathrm{P}(1)-\operatorname{Re}(1)$	118.9(3)
		$\mathrm{C}(13)-\mathrm{P}(1)-\operatorname{Re}(1)$	116.5(3)
		$\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{Re}(1)$	125.4(5)
		$\mathrm{C}(23)-\mathrm{N}(1)-\mathrm{Re}(1)$	114.6(5)
		$\mathrm{C}(28)-\mathrm{N}(2)-\mathrm{Re}(1)$	124.2(5)
		$\mathrm{C}(24)-\mathrm{N}(2)-\mathrm{Re}(1)$	$118.5(5)$
		$\mathrm{N}(4)-\mathrm{N}(3)-\operatorname{Re}(1)$	167.4(7)
		$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(29)$	121.0(12)
		$\mathrm{N}(4)-\mathrm{C}(29)-\mathrm{O}(1)$	126.6(12)
		$\mathrm{O}(1)-\mathrm{C}(29)-\mathrm{C}(30)$	114.0(13)

$\operatorname{Re}-\mathrm{N}(3)-\mathrm{N}(4)$ angles are essentially linear and $\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}$ angles are near 120°, indicating a "singly bent" benzoyldiazenido mode. The short Re-N(3) and N(3)-N(4) distances suggest extensive delocalization and multiple bonding throughout the $\mathrm{N}_{2} \mathrm{COPh}$ unit, an observation confirmed by the virtual planarity of the entire $\mathrm{Re}-\mathrm{N}-$ NCOPh group and the linearity of the Re-N-N unit. Re-N(3), N(3)-N(4) and N(4)C bond lengths and $\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}$, $\mathrm{Re}-\mathrm{N}(3)-\mathrm{N}(4)$ angles are in good agreement with values found by others for "singly bent" organodiazenido complexes [3, 9, 10].

The significant lengthening of $\mathrm{Re}-\mathrm{Br}$ in $\mathbf{1}$ results from the trans location of bromine donors with respect to the strongly π-interacting benzoyldiazenido group and the pyrazole ligand. The $\operatorname{Re}-\operatorname{Br}(2)$ distance trans to the NNR ligand is shorter than $\operatorname{Re}-\operatorname{Br}(1)$ trans to pyrazole, indicating the stronger trans influence of the heterocycle in comparison to the benzoyldiazenido group. The $\operatorname{Re}-\mathrm{N}(1)$ bond length of $\mathbf{1}$ agrees well with appropriate values found previously in similar rhenium compounds containing coordinated pyrazole [11, 12].

The bipy bite angle of $\mathbf{2}$ is typical of complexes containing polypyridine ligands: 75.5° for $\left[\operatorname{Re}(b p y)(\mathrm{CO})_{4}\left(\mathrm{COCH}_{3}\right)\right][13], 72.9^{\circ}$ for $\left[\operatorname{ReOBr}_{3}(\right.$ bipy $\left.)\right][14]$ and 77.9° for [$\operatorname{ReBr}_{4}($ bipy $\left.)\right]$ [14]. The significant lengthening of the $\operatorname{Re}-\mathrm{N}(1)$ bond results from the trans location of bromide, but the $\operatorname{Re}-\mathrm{N}(1)$ distance in $\mathbf{2}$ is determined by the presence of the strong π-acceptor benzoyldiazenido group in the trans position.

Bond valences were computed as $v_{i j}=\exp \left[\left(R_{i j}-d_{i j}\right) / B\right][15-17]$, where $R_{i j}$ is the bondvalence parameter (in the formal sense $R_{i j}$ is the single-bond length between i and j atoms) [18]. $R_{\mathrm{Re}-\mathrm{N}}, R_{\mathrm{Re}-\mathrm{P}}, R_{\mathrm{Re}-\mathrm{Br}}$ values were taken as $2.06,2.46$ and 2.45 [18], respectively, and the value of B was taken as 0.37 [16]. Computed bond valences, $\nu_{\mathrm{Re}-j}$, are gathered in table 4. The total valence of Re is 6.458 and 6.580 v.u. (valence units),

Table 4. Rhenium bond valences, $\nu_{\operatorname{Re}-j}$ [v.u.].

Bond	$\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$	$\left[\mathrm{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$
$\operatorname{Re}-\mathrm{Br}(1)$	0.735	0.764
$\operatorname{Re}-\mathrm{Br}(2)$	0.694	0.691
$\operatorname{Re}-\mathrm{P}(1)$	0.963	1.170
$\operatorname{Re}-\mathrm{P}(2)$	0.958	
$\operatorname{Re}-\mathrm{N}(1)$	0.708	0.644
$\operatorname{Re}-\mathrm{N}(2)$		0.930
$\operatorname{Re}-\mathrm{N}(3)$	2.400	2.381

Table 5. Hydrogen-bonding geometries for $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]\left[\mathrm{A}^{\circ}{ }^{\circ}\right]$.

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	$\angle(\mathrm{DHA})$
$\left[\mathrm{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$			
$\mathrm{C}(12)-\mathrm{H}(12) \cdots \mathrm{Br}(1)$	2.87	$3.584(9)$	134.0
$\mathrm{C}(18)-\mathrm{H}(18) \cdots \mathrm{Br}(1)$	2.81	$3.668(19)$	154.5
$\mathrm{C}(20)-\mathrm{H}(20) \cdots \mathrm{N}(1)$	2.62	$3.162(11)$	118.1
$\mathrm{C}(20)-\mathrm{H}(20) \cdots \mathrm{N}(2)$	2.60	$3.414(11)$	146.4
$\mathrm{C}(26)-\mathrm{H}(26) \cdots \mathrm{Br}(2)$	2.77	$3.549(9)$	141.9
$\mathrm{C}(46)-\mathrm{H}(46) \cdots \mathrm{Br}(2)$	2.82		115.9
$\left[\mathrm{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$		$3.268(11)$	
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{~N} 3$	2.48	$3.327(13)$	143.1
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{~N} 4$	2.45	$3.652(10)$	158.3
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{Br} 2^{\# 1}$	2.79	$3.214(13)$	155.3
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O} 1$	2.39	$3.434(9)$	147.3
$\mathrm{C} 19-\mathrm{H} 19 \cdots \mathrm{Br} 1$	2.79	$3.594(8)$	127.8
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{Br} 2$	2.78	$3.262(10)$	146.5
$\mathrm{C} 28-\mathrm{H} 28 \cdots \mathrm{O} 1$	2.38	$3.112(9)$	158.5
$\mathrm{C} 28-\mathrm{H} 28 \cdots \mathrm{~N} 3$	2.62	$2.829(16)$	113.9
$\mathrm{C} 31-\mathrm{H} 31 \cdots \mathrm{~N} 4$	2.51		100.5

\#1 $:+x-1, y, z ;{ }^{\# 2}:-x,-y,-z$.
respectively, for compounds $\mathbf{1}$ and $\mathbf{2}$. This indicates that rhenium substituents in $\left[\mathrm{ReBr}_{2}\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{N}_{2} \mathrm{COPh}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ are more weakly bonded than in $\left[\mathrm{ReBr}_{2}\right.$ $\left(\mathrm{N}_{2} \mathrm{COPh}\right)($ bpy $\left.)\left(\mathrm{PPh}_{3}\right)\right]$. The structures are stabilized by multiple, weak, intramolecular hydrogen bonds [19, 20], whose geometries are given in table 5 .

In contrast to the starting $\left[\operatorname{ReBr} r_{2}\left(\eta^{2}-\mathrm{N}_{2} \mathrm{COPh}-N^{\prime}, O\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ complex, infrared spectra show several bands in the $1550-1650 \mathrm{~cm}^{-1}$ range assigned to $v(\mathrm{~N}=\mathrm{N}), v(\mathrm{C}-$ $\mathrm{N})$ and $\nu(\mathrm{C}=\mathrm{O})$, which confirm the opening of the chelate ligand [3]. The complexes contain triphenylphosphine ligands and thus show the characteristic pair of bands at approximately 1430 and $1480 \mathrm{~cm}^{-1}$ and, typically, the lower frequency band is more intense.

The strong band at $3338 \mathrm{~cm}^{-1}$ for $\mathbf{1}$ is assignable to $\mathrm{N}-\mathrm{H}$ vibrations and the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ exhibits a singlet at 13.3 ppm , confirming the presence of pyrazole in the coordination sphere [21, 22]. Table 6 lists the positions and molar absorption coefficients of electronic bands and the electronic transitions assigned to them for compounds 1 and 2. Considering the diamagnetism of the complexes and linear configuration of the $\mathrm{Re}=\mathrm{N}=\mathrm{N}-$ group, it can be assumed that the $\mathrm{N}_{2} \mathrm{COPh}$ ligand is a four-electron donor and $\operatorname{Re}(\mathrm{I})$ has electron configuration $5 \mathrm{~d}^{6}$ [1].

Table 6. Electronic spectra, band positions, molar absorption coefficients and assignments for $\left[\mathrm{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$.

Band position [cm^{-1}]	$\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]$	Assignment
[$\left.\mathrm{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$		
13224	70	${ }^{1} \mathrm{~A}_{1} \rightarrow{ }^{3} \mathrm{~T}_{1}$
14302	116	${ }^{1} \mathrm{~A}_{1} \rightarrow{ }^{3} \mathrm{~T}_{2}$
26178	9421	${ }^{1} \mathrm{~A}_{1} \rightarrow{ }^{3} \mathrm{~T}_{1}, 5 \mathrm{~d} \rightarrow \pi^{*}{ }_{\text {pyrazole }}, 5 \mathrm{~d} \rightarrow \pi^{*} \mathrm{~N}=\mathrm{N}-\mathrm{C}$
37202	40256	${ }^{1} \mathrm{~A}_{1} \rightarrow{ }^{1} \mathrm{~T}_{2}, \pi \rightarrow \pi^{*} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CON}$
43821	65543	$\pi^{\mathrm{b}} \mathrm{C}_{6} \mathrm{H}_{5} \rightarrow 3 \mathrm{~d}(\mathrm{P}), \pi \rightarrow \pi^{*}$ pyrazole
[$\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)$]		
14633	1890	${ }^{1} \mathrm{~A}_{1} \rightarrow{ }^{3} \mathrm{~T}_{1}, 5 \mathrm{~d} \rightarrow \operatorname{bpy}(N-1)\left(\pi^{*}\right)$
19164	3620	${ }^{1} \mathrm{~A}_{1} \rightarrow{ }^{3} \mathrm{~T}_{2}, 5 \mathrm{~d} \rightarrow \operatorname{bpy}(N-2)\left(\pi^{*}\right)$
24594	8060	${ }^{1} \mathrm{~A}_{1} \rightarrow{ }^{1} \mathrm{~T}_{1}, 5 \mathrm{~d} \rightarrow \pi^{*}{ }_{-\mathrm{N}=\mathrm{C}}$
34495	36960	${ }^{1} \mathrm{~A}_{1} \rightarrow{ }^{1} \mathrm{~T}_{2}, \pi \rightarrow \pi^{*}=\mathrm{N}=\mathrm{N}$
43706	75050	$\pi \rightarrow \pi^{\text {by }}{ }^{\text {b }}, \pi^{\text {b }}{ }_{\mathrm{C}_{6} \mathrm{H}_{4}} \rightarrow 3 \mathrm{~d}_{\mathrm{P}}$
46685	64150	$\pi \rightarrow \pi^{*}{ }_{2} \mathrm{COPh}$

$\varepsilon=$ molar absorption coefficient.

Figure 3. The packing diagram of 1.

Figure 4. The packing diagram of 2.

Supplementary data

Supplementary data are available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK, on request, quoting the CCDC deposition numbers 226252 for $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and 242459 for $\left[\operatorname{ReBr}_{2}\left(\mathrm{~N}_{2} \mathrm{COPh}\right)(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)\right]$.

References

[1] M. Hirsh-Kuchma, T. Nicholson, A. Davison, W.M. Davis, A.G. Jones. Inorg. Chem., 36, 3237 (1997).
[2] T. Nicholson, N. de Vries, A. Davison, A.G. Jones. Inorg. Chem., 28, 3813 (1989).
[3] T. Nicholson, J. Zubieta. Polyhedron, 7, 171 (1988).
[4] D. Papagiannopoulou, I.C. Pirmettis, M. Pelecanou, Ch. Tsoukalas, C.P. Raptopoulou, A. Terzis, E. Chiotellis, M. Papadopoulos. Inorg. Chim. Acta, 346, 270 (2002).
[5] J. Chatt, J.R. Dilworth, G.J. Leigh, V.P. Gupta. J. Chem. Soc. A, 2631 (1971).
[6] G.M. Sheldrick. Acta Cryst., A46, 467 (1990).
[7] G.M. Sheldrick. SHELXL97: Program for the Refinement of Crystal Structures, University of Göttingen, Germany (1997)
[8] G.M. Sheldrick. SHELXTL: Release 4.1 for Siemens Crystallographic Research Systems (1990).
[9] J.O. Dziegielewski, S. Michalik, R. Kruszynski, T.J. Bartczak, J. Kusz. Polyhedron, 22, 25 (2003).
[10] J.R. Dilworth, P. Jobanputra, S.J. Parrott, R.M. Thompson, D.C. Povey, J.A. Zubieta. Polyhedron, 11, 147 (1992).
[11] M.N. Sokolov, N.E. Fedorova, V.E. Fedorov, A.V. Virovetes, P. Nunez. Russ. Chem. Bull., Int. Ed., 51, 872 (2002).
[12] H.A. Hinton, H. Hen, T.A. Hamor, F.S. McQuillan, C.J. Jones. Inorg. Chim. Acta, 285, 55 (1999).
[13] T. Scheiring, W. Kaim, J. Fielder. J. Organomet. Chem., 598, 136 (2000).
[14] B. Machura, J.O. Dzięgielewski, R. Kruszynski, T.J. Bartczak, J. Kusz. Polyhedron, 22, 2573 (2003).
[15] M. O'Keeffe, N.E. Brese. Acta Cryst., B47, 192 (1997).
[16] M. O'Keeffe, N.E. Brese. J. Am. Chem. Soc., 113, 3226 (1991).
[17] I.D. Brown. In Inorganic Solids Part III, H.B. Burgi, J.D. Dunitz (Eds), pp. 405-429, VCH, New York (1994).
[18] L. Sieron, M. Bukowska-Strzyzewska. Acta Cryst., C55, 1230 (1999).
[19] G.A. Jeffrey, W. Saenger. Hydrogen Bonding in Biological Structures, Springer-Verlag, Berlin (1994).
[20] G.R. Desiraju, T. Steiner. The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford (1999).
[21] G.A. Ardizzoia, G. LaMonica, A. Maspero, M. Moret, N. Masciocchi. Eur. J. Inorg. Chem., 1503 (1998).
[22] M. Cano, J.A. Campo, J.V. Heras, J. Lafuente, C. Rivas, E. Pinnila. Polyhedron, 14, 1139 (1995).

[^0]: *Corresponding author. Email: jod@tc3.ich.us.edu.pl
 \dagger Holder of a Foundation for Polish Science (FNP) scholarship.

